Binomial Power Series #
We introduce formal power series of the form (1 + X) ^ r, where r is an element of a
commutative binomial ring R.
Main Definitions #
PowerSeries.binomialSeries: A power series expansion of(1 + X) ^ r, whereris an element of a commutative binomial ringR.
Main Results #
PowerSeries.binomial_add: Adding exponents yields multiplication of series.PowerSeries.binomialSeries_nat: whenris a natural number, we get(1 + X) ^ r.PowerSeries.rescale_neg_one_invOneSubPow: The image of(1 - X) ^ (-d)under the mapX ↦ (-X)is(1 + X) ^ (-d)
TODO #
- When
Ais a commutativeR-algebra, the exponentiation action makes the multiplicative group1 + XA[[X]]into anR-module.
noncomputable def
PowerSeries.binomialSeries
{R : Type u_1}
[CommRing R]
[BinomialRing R]
(A : Type u_3)
[One A]
[SMul R A]
(r : R)
:
The power series for (1 + X) ^ r.
Equations
- PowerSeries.binomialSeries A r = PowerSeries.mk fun (n : ℕ) => Ring.choose r n • 1
Instances For
@[simp]
theorem
PowerSeries.binomialSeries_coeff
{R : Type u_1}
{A : Type u_2}
[CommRing R]
[BinomialRing R]
[Semiring A]
[SMul R A]
(r : R)
(n : ℕ)
:
@[simp]
theorem
PowerSeries.binomialSeries_constantCoeff
{R : Type u_1}
{A : Type u_2}
[CommRing R]
[BinomialRing R]
[Ring A]
[Algebra R A]
(r : R)
:
@[simp]
theorem
PowerSeries.binomialSeries_add
{R : Type u_1}
{A : Type u_2}
[CommRing R]
[BinomialRing R]
[Ring A]
[Algebra R A]
(r s : R)
:
@[simp]
theorem
PowerSeries.binomialSeries_nat
{R : Type u_1}
{A : Type u_2}
[CommRing R]
[BinomialRing R]
[Ring A]
[Algebra R A]
(d : ℕ)
:
@[simp]
theorem
PowerSeries.binomialSeries_zero
{R : Type u_1}
{A : Type u_2}
[CommRing R]
[BinomialRing R]
[Ring A]
[Algebra R A]
: