Partial sums of coefficients of L-series #
We prove several results involving partial sums of coefficients (or norm of coefficients) of L-series.
Main results #
LSeriesSummable_of_sum_norm_bigO: forf : ℕ → ℂ, if the partial sums∑ k ∈ Icc 1 n, ‖f k‖areO(n ^ r)for some real0 ≤ r, then the L-seriesLSeries fconverges ats : ℂfor allssuch thatr < s.re.LSeries_eq_mul_integral: forf : ℕ → ℂ, if the partial sums∑ k ∈ Icc 1 n, f kareO(n ^ r)for some real0 ≤ rand the L-seriesLSeries fconverges ats : ℂwithr < s.re, thenLSeries f s = s * ∫ t in Set.Ioi 1, (∑ k ∈ Icc 1 ⌊t⌋₊, f k) * t ^ (-(s + 1)).LSeries_tendsto_sub_mul_nhds_one_of_tendsto_sum_div: assume thatf : ℕ → ℂsatisfies that(∑ k ∈ Icc 1 n, f k) / ntends to some complex numberlwhenn → ∞and that the L-seriesLSeries fconverges for alls : ℝsuch that1 < s. Then(s - 1) * LSeries f stends tolwhens → 1with1 < s.
If the partial sums ∑ k ∈ Icc 1 n, ‖f k‖ are O(n ^ r) for some real 0 ≤ r, then the
L-series LSeries f converges at s : ℂ for all s such that r < s.re.
If f takes nonnegative real values and the partial sums ∑ k ∈ Icc 1 n, f k are O(n ^ r)
for some real 0 ≤ r, then the L-series LSeries f converges at s : ℂ for all s
such that r < s.re.
If the partial sums ∑ k ∈ Icc 1 n, f k are O(n ^ r) for some real 0 ≤ r and the
L-series LSeries f converges at s : ℂ with r < s.re, then
LSeries f s = s * ∫ t in Set.Ioi 1, (∑ k ∈ Icc 1 ⌊t⌋₊, f k) * t ^ (-(s + 1)).
A version of LSeries_eq_mul_integral where we use the stronger condition that the partial sums
∑ k ∈ Icc 1 n, ‖f k‖ are O(n ^ r) to deduce the integral representation.
If f takes nonnegative real values and the partial sums ∑ k ∈ Icc 1 n, f k are O(n ^ r)
for some real 0 ≤ r, then for s : ℂ with r < s.re, we have
LSeries f s = s * ∫ t in Set.Ioi 1, (∑ k ∈ Icc 1 ⌊t⌋₊, f k) * t ^ (-(s + 1)).