Integrals of functions of Radon-Nikodym derivatives #
Main statements #
mul_le_integral_rnDeriv_of_ac: for a convex continuous functionfon[0, ∞), ifμis absolutely continuous with respect toν, thenν.real univ * f (μ.real univ / ν.real univ) ≤ ∫ x, f (μ.rnDeriv ν x).toReal ∂ν.
theorem
MeasureTheory.Measure.integrable_toReal_rnDeriv
{α : Type u_1}
{mα : MeasurableSpace α}
{μ ν : Measure α}
[IsFiniteMeasure μ]
:
Integrable (fun (x : α) => (μ.rnDeriv ν x).toReal) ν
theorem
MeasureTheory.le_integral_rnDeriv_of_ac
{α : Type u_1}
{mα : MeasurableSpace α}
{μ ν : Measure α}
{f : ℝ → ℝ}
[IsFiniteMeasure μ]
[IsProbabilityMeasure ν]
(hf_cvx : ConvexOn ℝ (Set.Ici 0) f)
(hf_cont : ContinuousWithinAt f (Set.Ici 0) 0)
(hf_int : Integrable (fun (x : α) => f (μ.rnDeriv ν x).toReal) ν)
(hμν : μ.AbsolutelyContinuous ν)
:
For a convex continuous function f on [0, ∞), if μ is absolutely continuous
with respect to a probability measure ν, then
f μ.real univ ≤ ∫ x, f (μ.rnDeriv ν x).toReal ∂ν.
theorem
MeasureTheory.mul_le_integral_rnDeriv_of_ac
{α : Type u_1}
{mα : MeasurableSpace α}
{μ ν : Measure α}
{f : ℝ → ℝ}
[IsFiniteMeasure μ]
[IsFiniteMeasure ν]
(hf_cvx : ConvexOn ℝ (Set.Ici 0) f)
(hf_cont : ContinuousWithinAt f (Set.Ici 0) 0)
(hf_int : Integrable (fun (x : α) => f (μ.rnDeriv ν x).toReal) ν)
(hμν : μ.AbsolutelyContinuous ν)
:
For a convex continuous function f on [0, ∞), if μ is absolutely continuous
with respect to ν, then
ν.real univ * f (μ.real univ / ν.real univ) ≤ ∫ x, f (μ.rnDeriv ν x).toReal ∂ν.