insertIdx #
Proves various lemmas about List.insertIdx.
@[simp]
theorem
List.insertIdx_eraseIdx_self
{α : Type u}
{l : List α}
{n : ℕ}
(hn : n ≠ l.length)
(a : α)
:
Erasing nth element of a list, then inserting a at the same place
is the same as setting nth element to a.
We assume that n ≠ length l, because otherwise LHS equals l ++ [a] while RHS equals l.
theorem
List.insertIdx_injective
{α : Type u}
(n : ℕ)
(x : α)
:
Function.Injective fun (l : List α) => l.insertIdx n x