Shifted morphisms in the opposite category
If C is a category equipped with a shift by ℤ, X and Y are objects
of C, and n : ℤ, we define a bijection
ShiftedHom.opEquiv : ShiftedHom X Y n ≃ ShiftedHom (Opposite.op Y) (Opposite.op X) n.
We also introduce ShiftedHom.opEquiv' which produces a bijection
ShiftedHom X Y a' ≃ (Opposite.op (Y⟦a⟧) ⟶ (Opposite.op X)⟦n⟧) when n + a = a'.
The compatibilities that are obtained shall be used in order to study
the homological functor preadditiveYoneda.obj B : Cᵒᵖ ⥤ Type _ when B is an object
in a pretriangulated category C.
The bijection ShiftedHom X Y n ≃ ShiftedHom (Opposite.op Y) (Opposite.op X) n when
n : ℤ, and X and Y are objects of a category equipped with a shift by ℤ.
Equations
Instances For
The bijection ShiftedHom X Y a' ≃ (Opposite.op (Y⟦a⟧) ⟶ (Opposite.op X)⟦n⟧)
when integers n, a and a' satisfy n + a = a', and X and Y are objects
of a category equipped with a shift by ℤ.
Equations
- CategoryTheory.ShiftedHom.opEquiv' n a a' h = ((CategoryTheory.shiftFunctorAdd' C a n a' ⋯).symm.app Y).homToEquiv.symm.trans (CategoryTheory.ShiftedHom.opEquiv n)