Universal colimits and van Kampen colimits #
Main definitions #
CategoryTheory.IsUniversalColimit: A (colimit) cocone over a diagramF : J ⥤ Cis universal if it is stable under pullbacks.CategoryTheory.IsVanKampenColimit: A (colimit) cocone over a diagramF : J ⥤ Cis van Kampen if for every coconec'over the pullback of the diagramF' : J ⥤ C',c'is colimiting iffc'is the pullback ofc.
References #
- https://ncatlab.org/nlab/show/van+Kampen+colimit
- [Stephen Lack and Paweł Sobociński, Adhesive Categories][adhesive2004]
A natural transformation is equifibered if every commutative square of the following form is a pullback.
F(X) → F(Y)
↓ ↓
G(X) → G(Y)
Equations
- CategoryTheory.NatTrans.Equifibered α = ∀ ⦃i j : J⦄ (f : i ⟶ j), CategoryTheory.IsPullback (F.map f) (α.app i) (α.app j) (G.map f)
Instances For
A (colimit) cocone over a diagram F : J ⥤ C is universal if it is stable under pullbacks.
Equations
- One or more equations did not get rendered due to their size.
Instances For
A (colimit) cocone over a diagram F : J ⥤ C is van Kampen if for every cocone c' over the
pullback of the diagram F' : J ⥤ C', c' is colimiting iff c' is the pullback of c.
TODO: Show that this is iff the functor C ⥤ Catᵒᵖ sending x to C/x preserves it.
TODO: Show that this is iff the inclusion functor C ⥤ Span(C) preserves it.
Equations
- One or more equations did not get rendered due to their size.
Instances For
A universal colimit is a colimit.
Instances For
A van Kampen colimit is a colimit.
Instances For
Pullbacks distribute over universal coproducts on the left: This is the isomorphism
∐ (B ×[S] Xᵢ) ≅ B ×[S] (∐ Xᵢ).
Pullbacks distribute over universal coproducts on the left: This is the isomorphism
∐ (B ×[S] Xᵢ) ≅ B ×[S] (∐ Xᵢ).
Pullbacks distribute over universal coproducts on the left: This is the isomorphism
∐ (B ×[S] Xᵢ) ≅ B ×[S] (∐ Xᵢ).
Pullbacks distribute over universal coproducts on the right: This is the isomorphism
∐ (Xᵢ ×[S] B) ≅ (∐ Xᵢ) ×[S] B.
Pullbacks distribute over universal coproducts on the right: This is the isomorphism
∐ (Xᵢ ×[S] B) ≅ (∐ Xᵢ) ×[S] B.
Pullbacks distribute over universal coproducts on the right: This is the isomorphism
∐ (Xᵢ ×[S] B) ≅ (∐ Xᵢ) ×[S] B.
Pullbacks distribute over universal coproducts in both arguments: This is the isomorphism
∐ (Xᵢ ×[S] Xⱼ) ≅ (∐ Xᵢ) ×[S] (∐ Xⱼ).
Pullbacks distribute over universal coproducts in both arguments: This is the isomorphism
∐ (Xᵢ ×[S] Xⱼ) ≅ (∐ Xᵢ) ×[S] (∐ Xⱼ).