Preservation of multicoequalizers #
Let J : MultispanShape and d : MultispanIndex J C.
If F : C ⥤ D, we define d.map F : MultispanIndex J D and
an isomorphism of functors (d.map F).multispan ≅ d.multispan ⋙ F
(see MultispanIndex.multispanMapIso).
If c : Multicofork d, we define c.map F : Multicofork (d.map F) and
obtain a bijection IsColimit (F.mapCocone c) ≃ IsColimit (c.map F)
(see Multicofork.isColimitMapEquiv). As a result, if F preserves
the colimit of d.multispan, we deduce that if c is a colimit,
then c.map F also is (see Multicofork.isColimitMapOfPreserves).
The multispan index obtained by applying a functor.
Equations
Instances For
If d : MultispanIndex J C and F : C ⥤ D, this is the obvious isomorphism
(d.map F).multispan ≅ d.multispan ⋙ F.
Equations
- One or more equations did not get rendered due to their size.
Instances For
If d : MultispanIndex J C, c : Multicofork d and F : C ⥤ D,
this is the induced multicofork of d.map F.
Equations
Instances For
If d : MultispanIndex J C, c : Multicofork d and F : C ⥤ D,
the cocone F.mapCocone c is colimit iff the multicofork c.map F is.
Equations
- One or more equations did not get rendered due to their size.
Instances For
If d : MultispanIndex J C, c : Multicofork d is a colimit multicofork,
and F : C ⥤ D is a functor which preserves the colimit of d.multispan,
then the multicofork c.map F is colimit.
Equations
- c.isColimitMapOfPreserves F hc = (c.isColimitMapEquiv F) (CategoryTheory.Limits.isColimitOfPreserves F hc)