Limits of eventually constant functors #
If F : J ⥤ C is a functor from a cofiltered category, and j : J,
we introduce a property F.IsEventuallyConstantTo j which says
that for any f : i ⟶ j, the induced morphism F.map f is an isomorphism.
Under this assumption, it is shown that F admits F.obj j as a limit
(Functor.IsEventuallyConstantTo.isLimitCone).
A typeclass Cofiltered.IsEventuallyConstant is also introduced, and
the dual results for filtered categories and colimits are also obtained.
A functor F : J ⥤ C is eventually constant to j : J if
for any map f : i ⟶ j, the induced morphism F.map f is an isomorphism.
If J is cofiltered, this implies F has a limit.
Equations
- F.IsEventuallyConstantTo j = ∀ ⦃i : J⦄ (f : i ⟶ j), CategoryTheory.IsIso (F.map f)
Instances For
A functor F : J ⥤ C is eventually constant from i : J if
for any map f : i ⟶ j, the induced morphism F.map f is an isomorphism.
If J is filtered, this implies F has a colimit.
Equations
- F.IsEventuallyConstantFrom i = ∀ ⦃j : J⦄ (f : i ⟶ j), CategoryTheory.IsIso (F.map f)
Instances For
The isomorphism F.obj i ≅ F.obj j induced by φ : i ⟶ j,
when h : F.IsEventuallyConstantTo i₀ and there exists a map j ⟶ i₀.
Equations
- h.isoMap φ hφ = CategoryTheory.asIso (F.map φ)
Instances For
Auxiliary definition for IsEventuallyConstantTo.cone.
Equations
- h.coneπApp j = CategoryTheory.CategoryStruct.comp (h.isoMap (CategoryTheory.IsCofiltered.minToLeft i₀ j) ⋯).inv (F.map (CategoryTheory.IsCofiltered.minToRight i₀ j))
Instances For
Given h : F.IsEventuallyConstantTo i₀, this is the (limit) cone for F whose
point is F.obj i₀.
Instances For
When h : F.IsEventuallyConstantTo i₀, the limit of F exists and is F.obj i₀.
Equations
- h.isLimitCone = { lift := fun (s : CategoryTheory.Limits.Cone F) => s.π.app i₀, fac := ⋯, uniq := ⋯ }
Instances For
More general version of isIso_π_of_isLimit.
The isomorphism F.obj i ≅ F.obj j induced by φ : i ⟶ j,
when h : F.IsEventuallyConstantFrom i₀ and there exists a map i₀ ⟶ i.
Equations
- h.isoMap φ hφ = CategoryTheory.asIso (F.map φ)
Instances For
Auxiliary definition for IsEventuallyConstantFrom.cocone.
Equations
- h.coconeιApp j = CategoryTheory.CategoryStruct.comp (F.map (CategoryTheory.IsFiltered.rightToMax i₀ j)) (h.isoMap (CategoryTheory.IsFiltered.leftToMax i₀ j) ⋯).inv
Instances For
Given h : F.IsEventuallyConstantFrom i₀, this is the (limit) cocone for F whose
point is F.obj i₀.
Instances For
When h : F.IsEventuallyConstantFrom i₀, the colimit of F exists and is F.obj i₀.
Equations
- h.isColimitCocone = { desc := fun (s : CategoryTheory.Limits.Cocone F) => s.ι.app i₀, fac := ⋯, uniq := ⋯ }
Instances For
More general version of isIso_ι_of_isColimit.
A functor F : J ⥤ C from a cofiltered category is eventually constant if there
exists j : J, such that for any f : i ⟶ j, the induced map F.map f is an isomorphism.
- exists_isEventuallyConstantTo : ∃ (j : J), F.IsEventuallyConstantTo j
Instances
A functor F : J ⥤ C from a filtered category is eventually constant if there
exists i : J, such that for any f : i ⟶ j, the induced map F.map f is an isomorphism.
- exists_isEventuallyConstantFrom : ∃ (i : J), F.IsEventuallyConstantFrom i