Lemmas about NormedSpace.exp on Quaternions #
This file contains results about NormedSpace.exp on Quaternion ℝ.
Main results #
Quaternion.exp_eq: the general expansion of the quaternion exponential in terms ofReal.cosandReal.sin.Quaternion.exp_of_re_eq_zero: the special case when the quaternion has a zero real part.Quaternion.norm_exp: the norm of the quaternion exponential is the norm of the exponential of the real part.
The even terms of expSeries are real, and correspond to the series for $\cos ‖q‖$.
The odd terms of expSeries are real, and correspond to the series for
$\frac{q}{‖q‖} \sin ‖q‖$.
theorem
Quaternion.hasSum_expSeries_of_imaginary
{q : Quaternion ℝ}
(hq : q.re = 0)
{c s : ℝ}
(hc : HasSum (fun (n : ℕ) => (-1) ^ n * ‖q‖ ^ (2 * n) / ↑(2 * n).factorial) c)
(hs : HasSum (fun (n : ℕ) => (-1) ^ n * ‖q‖ ^ (2 * n + 1) / ↑(2 * n + 1).factorial) s)
:
Auxiliary result; if the power series corresponding to Real.cos and Real.sin evaluated
at ‖q‖ tend to c and s, then the exponential series tends to c + (s / ‖q‖).
@[simp]
Note that this implies that exponentials of pure imaginary quaternions are unit quaternions
since in that case the RHS is 1 via NormedSpace.exp_zero and norm_one.