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Chapter 1

Finite Deterministic Automata

Definition 1 (Deterministic Finite Automaton (DFA)). Mathlib provides a general definition
of deterministic finite automata that does not require the state space or alphabet to be finite or
have decidable equality. A DFA 𝛼 𝜎 consists of:

• step : 𝜎 → 𝛼 → 𝜎 - a transition function that maps a state and input symbol to a new
state

• start : 𝜎 - an initial state

• accept : Set 𝜎 - a set of accepting states

The DFA structure provides methods such as:

• eval : List 𝛼 → 𝜎 - evaluates a word from the start state

• evalFrom : 𝜎 → List 𝛼 → 𝜎 - evaluates a word from a given state

• accepts : Set (List 𝛼) - the language accepted by the automaton

Decidable equality means that for any two elements of a type, we can computationally deter-
mine whether they are equal or not. This is essential for implementing algorithms that need to
compare states or symbols.

Definition 2 (Computable Finite DFA). We define FinDFA 𝛼 𝜎 as a computable version of DFA
𝛼 𝜎 that enables algorithmic manipulation. A FinDFA differs from a DFA in several key ways:

• It requires Fintype instances on both the alphabet 𝛼 and state space 𝜎. A Fintype is a
type that has finitely many elements and provides a way to enumerate all of them.

• It requires DecidableEq instances on both types, enabling computational equality testing.

• The accepting states are represented as a Finset 𝜎 rather than a Set 𝜎. A Finset is a
finite set that can be computationally manipulated, unlike the more general Set which may
be infinite or non-computable.

This structure allows for a decidable procedure to determine if a state is accepting - we can
simply check membership in the finite set of accepting states. We provide a coercion from FinDFA
to DFA, allowing us to use all the existing DFA definitions for evaluation and language acceptance.
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Definition 3 (Accessible States and Accessible DFA). A state 𝑠 in a FinDFA is called accessible if
there exists some word 𝑤 that reaches 𝑠 from the start state. Formally, FinDFA.IsAccessibleState
M s holds when there exists a word 𝑤 such that evaluating 𝑤 from the start state of 𝑀 results
in state 𝑠.

An AccessibleFinDFA is a structure that extends FinDFA with the additional requirement
that every state in the automaton is accessible from the start state. This ensures that the
automaton contains no ”dead” or unreachable states.

Lemma 4 (Short Access Words and Decidable Accessibility). A fundamental result for imple-
menting accessibility checking is that if a state is accessible by any word, then it is accessible by
some word of length at most the number of states in the automaton. This bound follows from the
pigeonhole principle: if a longer word exists, it must revisit some state, creating a loop that can
be removed.

This theorem enables us to create a decidable procedure for determining state accessibility.
Instead of searching the infinite space of all possible words, we only need to check words up to
a finite length bound. Using the getWordsLeqLength function, we can enumerate all words of
bounded length and test each one.

Furthermore, this allows us to implement a language-preserving conversion from any FinDFA
to an AccessibleFinDFA by restricting the state space to only the accessible states. The resulting
automaton accepts exactly the same language as the original.

Proof. The proof uses strong induction on the length of the access word. If the word length is
already within the bound (at most the number of states), we are done. Otherwise, the word
must be longer than the number of states, so by the pigeonhole principle, some state must be
visited twice during the evaluation.

Using Mathlib’s DFA.evalFrom_split lemma, we can decompose the long word into three
parts: a prefix leading to the first occurrence of the repeated state, a middle section that forms
a loop returning to the same state, and a suffix continuing from there to the final state. By
removing the loop (middle section), we obtain a shorter word that still reaches the same final
state.

We can then apply the induction hypothesis to this shorter word, eventually obtaining a word
within the desired length bound. The decidability instance follows by checking membership in
the finite set of states reachable by bounded-length words.
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